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Figure (1) shows the relation between a, and R, for different

values of the depth ratio of d when the Chandrasekhar number
() = 100 . It is clear from the figure that the Rayleigh number in the
porous layer decreases conFinuously as the thickness of the layer
increases. The resultﬂs correspond to (¢ = 500, 1000, 10000 are
displayed in figures (2) - (4) respectively. It is clear from these
figures that the Rayleigh number increases as the Chandrasekhar
number  increases, i.e. the magnetic field has a stabilizing effect on the

system .
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differential eQuation in the porous layer with 12 boundary conditions.
This problem is solved using spectral method based on series expan-
sion of Chebyshev polynomials. In producing the results o; and o,
are ‘set to zero identicaily which corresponds to the stationary conv-

ection instability where the relation between o; and o, are given by

Numerical results and stability curves are obtained for the problem, with
thermal conductivity ratio & =143, Darcy number = 4x 10°

Beavers-Joseph constant @, = 0.1 and for a variety of reciprocal

depth ratios ranging from 0.33 to 0.1. The results of this paper are
illustrated in figures (1)-(4). They are qualitatively and quantitively
similar to those produced by Bukhari [10] in the absence of magnetic
ficld in the fluid layer. Bukhari has showed that the numerical results
produced by Chen and Chen [4] have alarge rounding error due to
the method used which is a 4th order Runge-Kutta method and he
showed that the spectral methods have a strong ability to solve the

multi-layered problems and produce accurate results.
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G,0,0, = w, + (D:, - az)Bm ,

2 2 2 2 2 4 :
where a, = r, + g, , a = r, + g; are non-dimensional

wave numbers in the porous medium and fluid layers respectively and
o .

where D ( ) = c?_( ), a=da, , o,=—/0c, . The final
X;

boundary conditions are :

Upper boundary x; = 1

WJ-ZO, Dfo=0, 9f=0, hf=0. (237)

Middle boundarv x; = @

6, =& 6, , D8 =D,6,, w,=¢e;:w,, D h =20,

; d D
[waf - _ aD;‘;wf] = Dow_ (2.38)
aBJ

ds, Da| Diw, - 3a;Dw, — —LDw :[&&+IJD W,

Lower boundary x, = -1

w, =0, 6,=0 | C o (239)

3. Results and Discussion

The eigenvalue problem-consists of an eighth order ordinary

differential equation in the flud layer and a fourth order ordinary

.22



velocity. It can be shown that these lboundary conditions are

transformed to

N aw ‘
d3.»3'3,Dai Viw, - A + 2Viw, [=—|1 + Da_J 10w,
ox, Prf Jt pF. Jt)Jdx,
(2.35)
A A a\fDa £9Wf 3wm
grd—|w, — =
ax, oy, Ox, fx,
If we consider that
We(t,x) = Wo (x3) exp[i(r.% + ¢guxs) + 0,1 ],

g.(t,x) = On (x3) expl i (rax; + g.x;) + 0,1 ],

w(1,x) = wi(x) epli(nx + gx)+ o],

G(t,x) = G(x)eplilnx + q¢x)~+ ot ],

A(t,x) = h(x)expli(rx + ‘Zf.xz’) + ot ]

where v, |, 1, | | g~ and ¢; are wavenumbers while o,, and o; are the

growth rates. It follows from equations (2.33) and (2.34) that

f (0} a})w, -0 0h, D%} = (D} -a) w, - 0p*w,  Ra,a}0,
o8, = w + (D) - ap)e,

o, B, 'ty = (D} - al)h, + Dw, (2.36)
DI (2 @, = (D2 = @), + Raal0, |
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DagV,

= Prm[—Vmpm ~V, + Ra,B,e,]

gp 5fm m o m
o (2.32)
—n . = V@

m &f ﬁwm m m

m

where § = sign ( 7, - T, } = sign(T,-T7,) and the hat
superscript  has been dropped although the wvarables are non-
dimensional. By taking the cur/ curl of the momentum equation in

each layer then taking the third component of the equations in each

layer, equations (2.31) and (2.32) become

g0 1 L, Ch Fw
—{mg'\_/zwJr - QF, l—fJ = ‘\74wJr - 0 5zzf + RafVZBJ,

ot P,.f I éz
a6
i _ 2
7 — ﬁwf = sz?f . (233)
éh ow
- oL = Ly Vf, h,
AEA- oz
and
1 D—a£V2 wh’l = - vz wﬂi + Ram VZ Bm
F. o &r
(2.34)
&6 ‘
G o Bw = V@
Iﬂ.’ 51 ﬁ ni ni

The Beavers-Joseph and normal stress- interfacial boundary conditions

must be reworked to eleminate pressure and horizontal components of

-20 -



The scaling (2.24) and (2.27) are now used to non-dimensionalize

the boundary conditions (2.23). Thus

~ w ~
6.(1)Y=0, w,(1)=20, L -0, h (1)=0,
(1) w, (1) N ax, r (1)
N . 26.(0 ) Sh

ax, ax, x;

- aw R -
ETdDa[ﬁf - 20,, fj = f)m . Er Wy (0) =wm(0), (2.30)
x5
7,)

Eré‘ﬁf = Aam (gTﬁf — ﬁm)’ Er = "y (ET{';}’ —
ax, dDa ax, d~Da

6,(-1)=0, W, (-1)=0,

where the parameters £; ,d and £ are defined by

Q2

d = Zm © o=

£T= T
df

x| S
,:ﬁ ];ﬁ

The linearized version of equations (2.25) and (2.28) can be obtained

by ignoring all product term. For the fluid layer l;} , @7 and h; satisty

aV 7l
roZ Prf[—‘?fpf + ViV, + Ra,8,e;, + Q, f}

f gz
é’gf . o
—L - Bw, = V30 231)
5{{‘ ﬁ 7 A (
a2l oV
n gl = Lo+ vl;” hf
o at 7z T

and for the porous layer V,  and &, satisfy
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A similar procedure is applied to the porous medium layer in which

non-dimensional spatial coordinates X, , time f_ , perturbed velocity

~n

l}m , pressure p_  and temperaturc £ _ are introduced by the

L
-

definitions
- d: . - -
x, = dx, , L, = =2t V. =£VnT
A d,
(2.27)
HA, - 5
w= =2 p,; 0, =17, -7,16
P X P m

where A, is the thermal diffusivity of the porous medium layer

defined by A4,= (Jf’"T . Then equations (2.22) governing the motion of
!

the fluid in the porous layer become

_Q_Eé’p:m = Pr [_Vm[}nr - l;m + Ramémella
¢ 2L, "
(2.28)
&0 - A

Gmé,;" + V. (vmo - Sign(i'}—Tol) e3) = Vi,
f

(pc),

where G, = (pcp)

while £, , Da and Ra, denote, respectively
r

the Prandtle number, Darcy number and Rayleigh number of the

porous layer and are defined by

K aKd I -T,
o= Y pa = L R, = EE0AIN | _ (2.29)
" ll’.’l d;? V&I‘"



A

dZ
Fr o ! r e f
A, d, 7
(2.24)
A, . H, A, . .
szygfpf:u hf: . fk[7 BfilTO-Tu|8f

where A, 1s the thermal diffusivity of the fluid phase defined by

« :
A = ﬁ . Equations (2.21) describing the motion of the fluid
PCp},

layer may be written in the non-dimensional form

~ ~

@ VAV =P |-V, p +V2P +Ra be + 02 B i Vi
oF OV VOV, =8 |-V, pp+V, Ve +Ra, 0,6+ 0 5y mp M Ye
f
o8 X . _ .
ar{ + I/J,p.(vfegr - sign(T, - T,) eé) = V20, (2.25)
i :
e Ohy V..V h, -V V adh Vih
— +(V,. 1, — h, - =+
" |\ i, re¥ gy rYr oz Vit

where F;.f is the viscous Prandtle number , F,, the magnetic Prandtle
: s

number , O the Chandrasekhar number and R&f the Rayleigh number are

defined by
i H:d? ad;|T, T,
]i = _._E_ , ])m = ﬂ . Q = H ;= , I{af — g f1 o u
T A, T A dp, vy, va,
(2.26)
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Py 2V, JL \
—_—r. = -V - =y - 7]
@ at prn k m pﬁa m g?

86, | T-T,
p +(pcp)fVm. [Vﬁm— Id ej) = x, V0.

(2.22)

(pe),

The modified boundary conditions on the upper boundary of
the fluid layer (x; = & ), the fluid / porous nterface (x; = 0) and

the porous layer (x; = ~-d, ) are respectively

w  |d
& (d)=0, w(d)=0, M:(), h(d ) =0,

Px,
6(0)=0,(0), Kf%f) _ Kmé’gmx(jo) |
~p(0) + Zpigxf—o) = —p,(0), w(0) =w.(0), 2.23)
Fu (0)  ay

3

a0 - ). 0 = %o - e.0)

» Sh, (0) . :
The condition (2.14) become > = 0 where A is the third

component of the perturbed magnetic field. In the flud layer we

shall introduce the non-dimensional spatial coordinates _%f J time £ -

perturbed velocity V, ,  pressure ";3_,, , magnetic field l;_,. and

temperature 677,. by the defimtions

-16 -



I}—.TG—(TO-T,‘)?— 0 < x, < d,
(2.19)

TM=TO-(1;-T,,);—3 d < x < 0.

Suppose small  perturbation for the static state so that the
velocity, pressure, temperature and magnetic field in the fluid and

porous layers are respectively

Ve o Brtpr, Ta‘(Ta'Tu);i“Ler Hé, +h
7

and (2.20)

V. . Pos op Ta~(Te—Ta);—3 + 6, .

"

It follows from the general field equations (2.9) and (2.10) that V, ,

pr , 6 and h, satisty

av,
pol —E4 V| =

Fi A l—l. ohy
-Vp,+ pVV, —p, al g + i H e +h,-Vi,

26 T, -T,
(pcp)fl: a:f +V,. [‘_«"6),— Odf e3H = x, V20, (221)

5sz
ot

oV, )
+ (V. VYh; =(h; V) Vf+H“a—j-“+ nvVoh

whereas V,_ , p, and @, satisfy

-15-



Su,(0) _ am(uf - u,,,) av,(0) . aﬂ,(vf - vm)

dx, JK ' dx, JK

(2.15)

where u, , v, are the limiting tangential compoﬁents of the fluid
velocity as the interface is approached from the fluid layer £, whereas
Um , V. are the same limiting components of tangential fluid velocity
as the interface is approached from the porous layer £’,.
Equations (2.9) and (2.10) posses as.tatic(equilibrium) solution sati-
sfying the boundary conditions (2.1‘1)—(2_15) of the form

vV, =90, V. = 0, H, = (0,0.H)
(2.16)
~-VP, + p,g =0, -VP + pg =20, VT, =VT, =0

together with the exterior boundary conditions

Iy (4)=1,, I.(-d.) =1 (2.17)
and the interfacial conditions
oT,(0) a71,(0)
T.(0) =T, (0), emZl oo e 0 po) = P0).
(0) =T (0), wp=2 ™ == P(0) = £.(0)
(2.18)

In conclusion, it follows that the equilibrium temperature fields in the

fluid and porous media are respectively

-14 -



be impenetrable and at constant temperature 7. In terms of w, and

W, , the axial velocity components of the fluid ind, and £

respectively, these requirements leads to the three conditions

- ow,(d,)
L(d)=T., w(d) =0, o 0, H(d) =0 (211)

: 3
on the top boundary of £, and the two conditions

In(-d,) = 1T y Wal(~dn) =0 , {2.12)
on the lower boundary of £, where H is the third component of the
magnetic  field vector. The fluid/ porous - media interface boundary

conditions are based on the assumption that temperature, heat flux

and normal fluid velocity are continuous. Thusat x; = 0 we have

T,,,(O‘) =T (0), K. ‘?]}(O) = &, é’Tf(o) -
ax, . ax,
(2.13),
aw (0
W, (0) =w; (0), ~P(0) + 24 5;() = —P[0).

This leaves two final conditions to be specified on the interface.
One of these is related to the magnetic field which is

GH(0)
ox,

e

=0 (2.14)

and the final one is due to Beavers and Joseph [9] which has the form

-13-



pressure Py . The governing equations for porous medium layer are
represented by (see Bukhan [10])

P, oV,
¢ Ot

= ——VPm _%Vm +pfg?

(2.10)

a1,
(‘Dc)m At + (pcp)fVm'VT; = Kmvzj;n >

where 7, is the Kelvin temperature of the porous medium layer,
Vi 1s the solenoidal seepage velocity, P, is the hydrostatic pressure,

k is the permeability of the porous medium, ¢ is its porosity, i, is
the overall thermal conductivity of the porous medium layer and

( pc )m is the overall heat capacity per unit volume of porous

medium layer at constant pressure. In fact
(pc), = ‘p(pcp)_f + {1 - ga)(pcp)m

where (pc,)» is the heat capacity per unit volume of the porous
substrate. |

The convection problem is completed by the specification of
boundary conditions at the upper surface of the viscous fluid layer,
at the interface between the fluid and porous medium layers and at
the lower boundary of the porous medium layer. For comparison
with Chen and Chen [4] we shall assume that x; = d; is rigid and

- held at constant temperature 7, whereas x; = -d, is assumed to
-12.



L o= (Hf ) V)Vf - (Vf ) V)Hf + ,VH,  (27)

The relations (2.4), (2.5); and (2.3) are used to recast the Lorentz

force J x B into

_Hifl Hy : H}
JoxBr =—\curl H,) x H. = -~ - VH,- vV|—%
4 ‘m( /) / 44(}5 ) f [2

2.8)
The field equations for this problem are written separately for
the superposed fluid layer and porous medium layer. The governing

equations for the fluid layer are
el H '

po[a—;‘ + ¥, - V)VIJ=~VPI + uVV, + pg o+ ﬁﬂ, . (VHJ,)
( )‘?Tf V.VT,| = x, VT 29
Peli\ 3y T VY T R (2.9)
L = (B, V)Vf - (v, - V), + n,V'H, .

Here 77 is the Kelvin temperature of the fluid layer, Py is the fluid kinetic
pressure, g 1is the acceleration due to gravity, g is the dynamic .
viscosity coeflicient of the fluid, ( p¢, )y is the heat capacity per unit

volume of the fluid at constant pressure and x; is the thermal cond-

' H?
uctivity of the fluid. The electromagnetic pressure g—”[~ V{—z—’]il s
7

neglected in this  problem and has been added to the form of the kinetic
-11-



div B, =0 (2.3)
Suppose that the magnetization in the fluid is directly proportional
to the applied field and that the fluid behaves like an Ohmic cond-
uctor so that Hy, By, J; and E; are comnected by the relations
B, = uH, , J, = 5(E, + V,xB) (24

and the Maxwell equations

I E o8, (2.5)

cur = ——L S

d ot . '
;

Jr = — curl Hy (2.5)
4

where g5 (constant) is the magnetic _permeability, o is the electrical
conductivity and the displacemént current has been neglected in the
second of these Maxwell equations as is customary in situation when
frée charge is instantaneously dispersed. On taking the curl of equations
(2.5), and replacing the electric field by the Maxwell relation (2.5);,

the magnetic field H; is now readily seen to satisfy the partial

differential equation

I T
ny curl curl Hy > + eurl (Vy x Hy ) (2.6)

where n, = (4:r,u IE)“I is the electrical resistivity. Equation (2.6) is

now reworked using standard vector identities to yield

-10 -



The fluid flow in the porous layer £, , with thickness d,, is
governed by Darcy’s law, whereas the fluid flow in the upper layer £,
with  thickness d; , is governed by Navier-Stokes eﬁuations.
Convection 1s dnven by the temperature dep_endence of the fluid
density. Typically, the Oberbeck-Boussinesq approximation is made in
which concepts like local thermal equilibrum, heating from viscous
dissipation, radiation effects etc. are ignored as are variations in fluid
density except where they occurs only in the momentum equation.
Let I denotes .the Kelvin temperature of the fluid and 7, be a
constant reference Kelvin temperature'then for the purpose of this

work, the fluid density pr is related to 7 by
pr = pJI - o(T-T)] 2.1)
where p, isthe density of the fluid at 7, and « the coefficient of

volume eﬁpansion of the fluid. (& 1s supposed constant)

Let V;, He, By, Jr and E; be respectively the fluid layer
velocity, magnetic field, magnetic indqctiog, current density and
electric field. The incbmpressibility of the fluid and the non-éxistehce
of magnetic monopoles require that ¥, and B, are both solenoidal
vectors. Hence |

div V; =0 ‘ (2.2)

-9.



=t

Suppose that the upper layer £, is filled with an incompressible

thermally and electrically conducting viscous fluid and is subjected to

electromagnetic force whereas the lower layer £, isoccupied by a

porous medium permeated by the fluid. Gravity acts in the negative
x; direction and the porous medium is heated at its lower boundary
such that the temperature of the lower boundary is greater than that of the
fluid and the porous media. Convection  takes place in  which

temperature dniven buoyancy effects are damped by viscous effects.
A stationary fluid with a thermal gradient in the x; direction ( the

so called “ conduction solution” ) is one possible solution to this

problem and so it is natural to investigate its stability.



superposed by afluid layer affected by a vertical magnetic field. The
flow in the porous layer is assumed to be governed by Darcy’s law.
The Inear stability equations will be solved using expansion of
Chebyshev polynomiais. This method has been usedl by Abdullah [6]
ir_1 the study of the Benard problem in the presence of a non-linear
magnetic  fluid and by Lindsay gnd Ogder_l ['1.'] in the implementation
of  spectral methods resistant to the generation of spun'ous
eigenvalues. Lamb [8] used also this method to investigate an
cigenvalue  problem arising from amodel discussing the instability in
the earth’s core. The method . possesses good convergence
characteristics and effectively exhibits exponential convergence rather

than finite power convergence.

2. Mathematical formulation

Let £'; and £, be two horizontal layers such that the bottom
of the. layer £, touches the top of the layer £’ . An’ght handed
system of Cartesian coordinates (x;, , i= 1,2,3 ) is chosen so that
the interface is the plane x5 = 0, the top boundary of £\ isx: = d

which is rigid and the lower boundary of £.is x3 = -d,, . (figure 1)



that the critical Rayleigh number in the porous layer decreases
continuously as the thickness of the fluid layer is increased and he
used a S';hooting method to solve the linear stability equations. Nield
[2] formulated the problem with surface-tension effects at a deformable
upper surface included and he obtained asymptotic solutions for small
wave numbers for a constant heat-flux boundary condition. Sun [1] and
Nield [2] have wused Darcy’s law in formulating the equations for
pc;rous layer while Somerton and Catton [3] used the Brinkman term
in the equation of motion to solve the problem using Galerkin
method. Recently, Chen and Chen [4] considered the problem with
temperature and salinity gradients are exist in both layers. Their
investigation assumed s;tationary instability from the outset and they
used a shooting techniqlié based on fourth order Runge-Kutta
approximations for integration of all differential equations. éhen et.
“al [5} s-tudied the problem with an isotropic permeability and thermal
diffusivity  in the porous iayer. Flow in porous layer was assumed
to be governed by Darcy’s law and the linearized stability equations
are solved using shooting method.

In the present study, we shall emulate the work of Chen and
Chen f[4} in the presencé of a vertical magnetic field. i.e. we shall

eonsider the onset of thermal convection in a horizontal porous layer

-6-



Convection in a Horizontal Porous Layer
Superposed by a Fluid layer in the Presence of
Magnetic Field

Abdul-Fattah K. Bukhani and Abdullah A. Abdullah
Department of Mathematical Sciences, Faculty of Applied Sciences,
Umm Al-Qura University, Makkah, Saudi Arabia.

Abstract

A linear stability analysisis applied to a system consisting of
a horizontal fluid layer, affected by a vertical magnetic field,
superposed a laypr of a porous medium permeated by the fluid with
uniform heating from below. Flow in porous medium is assumed to be
governed by Darcy’s law. The Beavers-Joseph condition is applied at
the interface between the two - layers. Numerical solutions were
obtaiﬁed for stationary convection case using the method of
expansion of Chebyshev polynomials. It is found that the spectral
method has a strong ability to solve the multi-layered problem and that the

magnetic field has a strong effect in this model .
1. Introduction

The onset of convection in a system consisting of a horizontal
fluid ‘layer superposed a porous layer when the system is heated

from below has been considered, firstly, by Sun [1] who showed

: .
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